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Abstract  

This paper presents a novel adaptive sampling method using intelligent UAVs in battlefields to help soldiers with awareness of 

environments. A UAV can perform as a robotic wingman in soldier formations, compensating for that cannot be scouted by soldiers, 

even being exposed to enemy fire. With portable size, the UAV is easily carried and flown for scouting tasks anytime. The flexibility 

of UAVs makes it possible to collect measurements sequentially. Each measurement is adaptively designed and determined from the 

Bayesian perspective to increase the fidelity of battlefields. Wavelet structure is considered to optimize measurement projections to 

substantially reduce the number of measurements based on compressive sensing framework. More specifically, each measurement 

is optimized by maximizing the posterior variance inferred from existing informative data. A motion planning algorithm for UAVs is 

designed based on the distribution of optimal measurements, striking a balance between moving cost and measurement value. 

Simulation results and future experimental environments are presented at last.  

I. INTRODUCTION  

This paper is focusing on adaptive sampling based on UAVs in 

battlefields, which is established on the emerging research 

work of mobile adaptive sensing and down-sampling methods. 

To collect measurements from dynamic battlefields, both 

soldiers and unmanned vehicles can be involved. Soldiers can 

collect battlefield information in their surrounding areas. 

However, it is usually impossible and very dangerous to collect 

information from where enemy firepower can cover. By 

adopting UAVs, measurements can be collected in a more 

flexible way. UAVs are equipped with more advanced sensors 

and computational devices. As mobile robotic sensors, the 

mobility allows them to reconfigure themselves according to 

sensing requirements. With increasing research interest in 

mobile robotic sensors due to their wide applications [1]– [5], 

researchers are becoming more aware of the advantages of 

using mobile sensors to monitor and recover dynamic 

environments.  
In practical applications, mobile sensors always collect 

measurements excessively, causing a waste of sensing re-

sources. Typically, Singh et. al. [3] have proposed an adaptive 

sampling algorithm to sample and reconstruct a spatial map 

using mobile sensors, however, with a coarse survey before 

adaptive refinement, a portion of which may be regarded as 

excessive measurements containing less useful information. 

Furthermore, mobile robotic sensors are always constrained by 

limited energy, sensor capability, and other environmental fac-

tors, influencing their sensing capabilities. These suggest that 

only the most informative data should be collected to avoid 

wasting sensing resources especially in battlefields, where 

more casualty can be caused due to additional scout. Compared 

with sampling schemes that use invariant strategies involving a 

uniform sampling scheme, it leaves open problems on how to 

evaluate, determine, and collect the most informative 

measurements.  

In the real world, the most informative data always con-

centrates at some particular locations that can be inferred or 

predicted. Most natural signals are sparse or compressible 

under certain domains, which means some or even many 

components of signals can be discarded. Therefore, it will be a 

waste of time and sensing resources to collect measurements of 

these components. Partial measurements containing most 

informative data are enough to represent target sensing fields 

with acceptable errors. Compressive sensing [6] guarantees 

signals can be recovered from incomplete measurements with 

little information loss. Motivated by compressive sensing, the 

number of measurements can be substantially reduced with 

acceptable reconstruction errors. Traditional compressive 

sensing methods collect random measurements, which have 

been proved to be of efficiency and high-performance in the 

field of digital signal and image processing. However, the 

number of measurements can be further reduced to improve 

sampling efficiency, if the latent features of signal itself can be 

explored to locate the most informative data.  

Researchers working on Bayesian compressive sensing have 

made efforts to further reduce the number of measurements. 

Duarte et. al. [7] have proved the number of compressive 

sensing measurements can be substantially reduced, consid-

ering target signal features from the Bayesian perspective. 

Based on the signal dependency under a sparse domain, each 

measurement can be individually designed and optimized. 

Given a set of incomplete measurements, the original signal 

distribution can be inferred. Thus, it is possible to determine  

new measurements that can maximize the posterior variance to  



decrease the sensing field uncertainty. This suggests to follow
up a loop to determine adaptive measurements sequentially
that each measurement is the most informative given all
existing ones.

This paper develops an adaptive approach to sample and
recover battlefields by collecting a small number of mea-
surements using UAVs. This approach features flexibility
and adaptability. To monitor and recover dynamic environ-
ments, this method involves fast sampling, processing, and
re-sampling scheme. The way to increase sampling efficiency
is to collect a small number of measurements, but the most
informative ones. It is also critical to efficiently allocate sens-
ing resources between sampling and mobile sensor moving.
Since mobile sensors are restricted by multiple factors, includ-
ing energy constraints, sensor capabilities, etc, measurement
collection is also subject to UAVs moving cost.

The sampling algorithm in this paper is built based on
compressive sensing, collecting only the most informative
data. Compressive sensing is considered in the Bayesian
perspective. Wavelet structure and statistical properties of
given signals will be observed from existing incomplete mea-
surements. New measurements are determined by exploiting
these latent features, and collected by mobile robotic sensors
sequentially. Mobile sensors (UAVs) provide the flexibility to
sequentially sample a target sensing field. Motion planning
is proposed to strike the balance between the information
amount of each measurement and moving cost from current
sensing position to the next candidate one. The algorithm
alternates between determining measurements and collecting
measurements. Since each measurement is carefully designed
and locally optimized to contain more information, the number
of measurements is smaller than that of compressive sensing
methods involving random measurements. In this paper, the
statistical model of compressive sensing under wavelet tree
structure is introduced as preliminary knowledge. Iterations to
determine and collect the most informative measurements are
elaborated. Existing research work is reviewed, and experi-
mental results are shown at last.

II. PRELIMINARY KNOWLEDGE

This paper is based on compressive sensing. The basic
compressive sensing idea involves dowm-sampling phase and
signal reconstruction phase. This paper develops adaptive
sampling scheme based on mobile platforms for the former
one. This section briefly summarizes the preliminary research
work about statistical compressive sensing and wavelet tree
structure that will be used in presenting the proposed adaptive
sampling approach.

A. Compressive Sensing Model

Compressive sensing reconstructs a target signal by using
incomplete measurements. Given an unknown signalx with
the dimension ofN × 1, it is required at leastN mea-
surements in traditional sampling methods. In compressive
sensing, a measurement matrixΦ projects the signal from
higher dimension (N ) to lower dimension(M) with M < N ,
generating the measurement sety with M elements, subject

to y = Φx. Obviously, it cannot be solved directly, since
there are more unknown variables than equations. Thus, in
compressive sensing it requires the target signalx is either
sparse or compressible (sparse under another domain) to
reduce the number of unknown entries. A sparse signal of
dimensionN × 1 with the sparsityK indicates that there are
only K significant entries, andN − K zero or very small
entries. Usually, theK is far smaller than theN . To sparsely
represent the target signalx, it is supposed thats is the sparse
representation withx = ΨT s, whereΨ is a particular sparse
basis.Ψ could be theI matrix if x is sparse already. Therefore,
the basic compressive sensing equation is given

y = Φx = ΦΨT s (1)

With a sparses that has onlyK significant values (K < M ),
the system can be solved. OnlyK unknown variables have to
be dealt with ratherN (K ≪ N ), thus reducing the signal
complexity.

The compressive sensing model in Equ.(1) is popularly
used in many applications. Based on this basic compressive
sensing model, statistical compressive sensing model has been
studied. Signals in the CS system as shown in Equ.(1)
are modeled under Gaussian distributions, so that statistical
features can be used. In statistical models, the sparse represen-
tations is decomposed as the sum of two items with significant
values and small values separately,s = sm + se, wheresm

is established by replacing small entries with zeros, andse is
established by setting significant entries zero. Both the signifi-
cant and the small values can be modeled as Gaussian random
variables with significant and small variances. However, the
second item is always regarded as Gaussian noises. The system
equation is given

y = ΦΨT sm + ΦΨT se = ΦΨT sm + ne (2)

where ne, the insignificant item, is regarded as a sort of
noise. In Equ.(2), the measurement noise is ignored. With
the consideration of measurement noise, the system equation
can be expressed as

y = ΦΨT sm + ne + nw = ΦΨT sm + n0 (3)

wherenw is the measurement noise, andn0 is the total noise
in the system. The total noise is modeled within Gaussian
distributions,n0 ∼ N(0, α−1

0 ) with α−1
0 = σ2

0 . Thus, the
compressive sensing measurementsy can be regarded as a
multivariate Gaussian distribution

y ∼ N(ΦΨT sm, α−1
0 I) (4)

The Gaussian distributions illustrate statistical features of
target signals. In this paper, a particular sparse domain, Haar
wavelet is used, and the statistical features are used to exploit
the hidden signal structure under Haar wavelet domain.

B. Wavelet Tree Structure

Compressive sensing considers signal reconstruction under
sparse domains. Haar wavelet domain is a popular used
sparse domain, under which signals appear different scales
of repeated patterns besides the sparseness. Signals are quite



Fig. 1. Wavelet structure.

related between adjacent scales, forming the wavelet tree
structure. Recent research has proved that the number of CS
measurements can be further reduced by exploiting the wavelet
tree structure. This structure can be observed under the Haar
wavelet domain. In this paper, wavelet tree structure is studied
to optimize adaptive measurements.

In traditional compressive sensing, random samples are
always collected [6], and the signal is directly reconstructed
without considering the dependencies of entries of the sparse
representations. By exploiting the signal structure, Baraniuk
et al. [8] prove that CS performance can be improved. The
wavelet-tree structure [9] provides a powerful tool to explore
signal structure under Haar Wavelet domain. In this paper,
Ψ in Equ. (1) represents the Haar wavelet domain, and
Fig. 1 illustrates the structure of the wavelet tree. In Fig.1
the signal is repeated at different scales,l = 0 . . . L. Each
coefficient in upper scale (smaller scale number) has four
children coefficients in the adjacent lower scale. Whether the
coefficient in lower scale is significant or insignificant depends
quite a lot on whether its parent is significant or not. Thus, two
states can be defined to illustrate the significant or insignificant
value. Given a compressive sensing model in Equ.(1), the
entries of the sparse representations are modeled in two
states, “high” and “low”, corresponding to the significant and
small values separately. It is believed that one coefficientis
likely to be significant, if it has a parent of significance, and
vice verse. Therefore, in the sparse representation, no entry is
independent. The dependency between entries is exactly the
latent feature to be explored that will benefit measurement
selection.

Each of the wavelet coefficientss is modeled as a Gaussian
random variable

si ∼ N(0, σ2
i ), i = 1 . . .N (5)

where the varianceσ2
i is written asα−1

i in most literatures,
indicating the precision of Gaussian distributions. To illustrate

the “likely to be significant or small” relationship, the vari-
ance is considered in two aspects, zero(or nearly zero) and
non-zero(or significant), corresponding to “low” and “high”.
The transition-probability matrixP at scalel is defined as
P (1, 1) = 1 − π0

l , P (1, 2) = π0
l , P (2, 1) = 1 − π1

l ,
P (2, 2) = π1

l . TheP (i, j) indicates the probability of a child
in statej given its parent in statei. Thus, the variance of each
wavelet coefficient locates in a mixture distribution

σ2
i = (1 − πi)ǫτ

2
i + πiτi (6)

whereǫ is a very small value, andτ is the original variance.
The small valueǫ could be zero, but does not has to be,
since the precision is usedαi = σ−2

i . Each wavelet coefficient
maintains two mixture parametersπi except that in the root
scale (l = 0), which indicates two possible different states of
the corresponding parent.

πi =











π0
i if spa(i) = 0

π1
i if spa(i) 6= 0

πr
i if root scale

(7)

ppa(i) is defined as the parent coefficient of coefficientsi.
For Spa(i) = 0, it meansσi = ǫτi, corresponding to the first
item in Equ.(6). For the coefficients at root scale, there is no
parents existing, and they are considered as significant values
all the time.

III. A DAPTIVE SAMPLING USING MOBILE SENSORS

Adaptive sampling is presented in details in this section.
This adaptive sampling is based on compressive sensing.
Compressive sensing collects random measurements without
considering impact of each measurement. Adaptive sampling
follows up an iterative procedure to generate measurementsby
mobile robotic sensors step by step to make sure each measure-
ment is the most informative one given existing measurements.
A mobile sensor requires some initial information before adap-
tively collecting measurements. In battlefields, informative
data from soldiers are regarded as initial information for UAVs
to adopt adaptive measurement collection. New measurements
are collected to increase the fidelity and resolution given
existing measurements.

Fig. 2 shows the adaptive sampling and reconstruction
framework for a block. This framework includes six major
parts,initial measurements, mean and variance estimate, mea-
surement determination, motion planning, parameter update,
and signal reconstruction. In initial measurements, a small
portion of battlefields information is given at the very be-
ginning. Then, compressive sensing model in Equ.(1) is
established withΦ as the initial random measurement matrix.
An iterative process is used to determine and collect mea-
surements. New measurements will be inferred from posterior
information of the current block given existing measurements
from the Bayesian perspective.mean and variance estimate
approximates the posterior mean and variance of the wavelet
coefficients under Haar Wavelet domain. Theπ parameter
introduced in II is used to estimate posterior mean and
variance, and will be updated in the following process. Once
the posterior mean and variance are obtained,Measurement



Fig. 2. Framework of adaptive sampling & reconstruction.

determinationchooses optimal measurements to maximize the
posterior variance. The measurement of the maximal posterior
variance indicates to diminish the sensing field uncertainty to
the most extent. However, for a mobile sensor the moving
cost has to be considered.Motion planningmakes a trade-
off between measurement importance and sensor motion, and
confirm the position of the next measurement from a few
candidate positions. The new measurement is collected after
the motion is confirmed and accomplished.Parameter update
generates more accurate parameters given all the existing
measurements. Accurateπ would result accurate measurement
inference. Each of the four-step iterations ends up with a new
row φnew added into the measurement matrixΦ and a new
measurement setynew generated. In the next iteration, all
the computation is based on the newly generatedΦ and y.
The sampling iteration terminates, once enough measurements
are collected. Signal is then reconstructed for current block,
and mobile sensor will move to an adjacent block for more
exploration.

A. Estimate Posterior Mean and Variance

For each block, a set of initial random measurements has to
be collected as the basic information. Then new measurements
are generated step by step. Each measurement is determined
from existing information, more specifically the posterior
variance of the target signal. In this part, posterior mean and
variance estimation is shown.

In this paper, bothy and s are regarded as Gaussian
variables, which are determined by mean and variance. To
approximate the signal, it is important to infer the mean
and variance. In the compressive sensing system, the sparse
representations (wavelet coefficients) is subject to multivari-
ate Gaussian distributions. Given a measurement sety, the
posterior distribution ofs is given in [10]

p(s|y, α, α0) =
p(y|s, α0)p(s|α)

p(y|α, α0)
(8)

whereα = {α1, α2...αN}, andαi corresponds to the Gaus-
sian precision of each Wavelet coefficient.p(y|s, α0) and
p(s|α) are Gaussian distributions from Equ.(4) and Equ.(5).
p(y|α, α0) is a likelihood function forα andα0, being given

L(α, α0) = p(y|α, α0) =

∫

p(y|s, α0)p(s|α)ds (9)

= (2π)−
N
2

∣

∣

∣

∣

I

α0
+ ΦA−1ΦT

∣

∣

∣

∣

exp{
I

α0
+ ΦA−1ΦT }

Since the three distributions in Equ.(8) are known, the
posterior distribution ofs can be calculated. Given a set
of measurementsy, it can be calculated thats|y, α, α0 ∼
N(µ, Σ) with posterior mean and variance, yielding

µ = α0ΣΦT y (10)

Σ =
(

α0(ΦΨT )T ΦΨ + A
)

−1
(11)

whereA = diag(α1, α2...αN ).
With the posterior mean and variance calculated, it is worth

noting that the parameters in Equ.(9), which is a likelihood
function, can be optimized in order to infer new precisions
given the posterior mean and variance. To optimize parameters
in Equ. (9) is to maximizeL(α, α0), so that the bestα and
α0 can be found for the distribution. This is known as the
type-II maximum likelihood, and can be implemented through
differentiation, being given in [10]. The new parameters yield:

αnew
i =

γi

µ2
i

(12)

1/αnew
0 =

||y − Φµ||22
N −

∑

γi

=
||y − Φµ||22

∑

πi

(13)

whereγi = 1 − αiΣii.
An iterative algorithm can be executed by alternating be-

tween Equ.(10) (11) and Equ.(12) (13). The convergence
is very fast, andαi becomes large for zero or small wavelet
coefficients.

In Haar Wavelet domain, signals have special associations
between adjacent scales, suggesting that the parameterα can
be further optimized. From Equ.(6), it can be seen that the
wavelet structure can be imposed to the variance. Thus, the
same structure can be imposed to Equ.(12), resulting

1/αnew
i = (1 − πi)ǫ

µ2
i

γi

+ πi

µ2
i

γi

(14)

The iterative algorithm has been changed to alternating be-
tween Equ.(10) (11) and Equ.(14) (13). The posterior mean
and variance can be approximated with a few iterations.

B. Measurement Determination

With the estimation of posterior mean and covariance, new
measurements are to be determined to achieve local optimum.
The basic idea to determine a new measurement is to add a
new row to the measurement matrixΦ, such that the resulting
measurement would have the maximal posterior variance. The
maximal posterior variance indicates the most uncertainty, and



a measurement with maximal posterior variance is to diminish
the uncertainty to the most. Suppose as a time instant,k
measurements have be collected with the given measurement
matrix Φ = [φT

1 , φT
2 · · ·φT

k ]T . The aim in this step is to
determine a new rowφk+1 and add it into the measurement
matrix Φ.

After a few iterations addressed in Section III-A, the latest
covariance is computed given newα andα0

Σnew =
(

αnew
0 (ΦΨT )T ΦΨ + Anew

)(−1)
(15)

whereAnew = diag(αnew
1 , αnew

2 ...αnew
N ).

In [11], new measurements are determined by maximizing
the posterior covariance under sparse domain. In this section,
new measurement will be determined in the spatial domain by
maximizing the posterior variance of new measurement

V ar(yk+1) = φk+1Ψ
T Σnew(φk+1Ψ

T )T (16)

The larger the variance is, the more uncertain the measure-
ment is, indicating this particular measurement contains more
valuable information. The parameter is found by maximizing
this quantity

φ̂k+1 = arg max
φk+1

V ar(yk+1) (17)

which is the locally optimized measurement. There might be
millions of new row forms. It is impossible to go through all
of them and determine an optimal one. The candidate new
measurements are chosen from a pre-designed library of a
small number of elements, subject to the particular sensing
pattern of mobile robotic sensors used.

C. Motion Planning

The optimal measurement determined above is the most in-
formative one without considering any motion planning. With
mobile sensor involved, motion planning is also an important
part. Measurements have to be determined not only subject
to the maximal posterior variance but also the moving cost
from current position to the newly determined measurement
position.

Based on the description in Section III-B, one measurement
is determined as the local optimum. However, it would be
wasteful if the mobile sensor go back and forth to collect
measurements. To plan the motion of mobile sensors, the
moving cost should be considered. Not the most informative
measurement is collected, but the one which strikes the balance
between information content and moving cost. Thus, Equ.(17)
should be changed by adding a moving cost item.

φ̂k+1 = arg max
φk+1

(V ar(yk+1) − ωC(φk, φk+1)) (18)

where the first item remains the same as Equ.(17), and the
second item represents the moving cost.C(·, ·) is a function
indicating the moving cost between the two measurement
positions, andC(φk, φk+1,i) represents the moving cost from
current sensing position to the next one.ω is a weighted factor
that is used to achieve a proper ratio for these two items.
In plane area, the moving cost is usually proportional to the
moving distance. However, in the real applications, many other

factors have to be considered, including mobile sensor turning,
obstacles, collisions, etc. In this paper, we fairly assumethe
moving cost is proportional to the moving distance.

The situation in Equ.(18) can be further simplified. A
few candidate measurements can be generated using Equ.
(17), which should the most informative ones. It is supposed
that n candidate measurements are generated, denoting as
φk+1,1 · · ·φk+1,n. The new measurement is chosen simply by

φ̂k+1 = arg min
φk+1,i

C(φk, φk+1,i) i = 1 · · ·n (19)

In ideal situations, it is exactly the closest one to the current
sensing position. From the experimental results, these two
strategies do not differ much. Thus, the latter one is chosen,
since the calculation can be simplified, and precessing time
can be saved.

The paragraphs above have addressed how to determine one
new measurements. However, in real experiments, this is a
process requiring a lot of computation. To reduce computation
load as well as save time, the strategy goes in two steps
alternating between generating a few new measurements as
addressed above and collecting all of them. Whenn candidate
measurements are generated, the problem is converted to a
travelling salesman problem (TSP). It is to collect all these
measurements with the minimal moving cost. Before all the
n measurements are collected, no new candidate measure-
ments will be generated. Once finished, anothern candidate
measurement are generated. TSP belongs to the class of NP-
complete problems. In this part, we just choose the candidate
measurement with minimal moving cost as the next one.
As measurements are collected, the numbern would finally
reduce to1. Then, a new round can be performed generating a
few more candidate measurements, and collecting one by one.

D. Parameter Update

The aim to updateπ is to approximate the distribution of
s more accurately, includingπi for each wavelet coefficient.
The concept of conjugate prior is used, which can estimate
variables more accurately with known samples.Beta distri-
bution is the conjugate prior of a binomial distribution given
some existing samples.

The paradigm shown in Fig.2 contains for major parts for
each loop. The parameterπi indicates whether the wavelet
coefficient is significant or not, while the latestα generated
in estimate posterior mean and varianceand used in Equ.
(15) for each loop has the same meaning. Thus, the update
of parameterπi uses all theαi generated in prior loops.
Supposing at thekth loop, there arek − 1 αi that can be
used to to estimationπi, denoting asαnew(j)

i , j = 1 . . . k− 1.
The π parameters are updated by

p(π0
i |−) = B



ei0
0 +

∑

j

1(α
new(j)
i ≪ Inf, α

new(j)
pa(i) = Inf),

f i0
0 +

∑

j

1(α
new(j)
i = Inf, α

new(j)
pa(i) = Inf)



 (20)



p(π1
i |−) = B



ei1
0 +

∑

j

1(α
new(j)
i ≪ Inf, α

new(j)
pa(i) ≪ Inf),

f i1
0 +

∑

j

1(α
new(j)
i ≪ Inf, α

new(j)
pa(i) = Inf)



 (21)

p(πr
i |−) = B



eir
0 +

∑

j

1(α
new(j)
i ≪ Inf),

f i1
0 +

∑

j

1(α
new(j)
i = Inf, )



 (22)

where1(x) denotes an indicator function.1(x) = 1 for true
statementx, and0 otherwise.

Iterations containing the above four steps carry on until
enough measurements are collected. Signals are reconstructed
given both initial random measurements and adaptive measure-
ments. To reconstruct signal, probabilistic methods are used.
More details about reconstruction is shown in next section.

IV. SIMULATIONS AND EXPERIMENTS

In this section, possible experimental environment is intro-
duced and two simulations are presented using the sampling
method addressed in this paper. To reconstruct the signal, the
MCMC method addressed in [12] is applied.

A. Experimental Environments in Battlefields

The awareness of environments is important for any soldier
in battlefields. However, in real situations, soldiers are unable
to observe all the perspectives due to the complex environ-
ments and enemy fire power. Scout, battlefields surveillance,
target acquisition, etc, are always dangerous tasks that may
cause unexpected casualties. An intelligent portable UAV
equipped with vision sensors can provide extra information
that cannot be observed from soldiers’ perspectives. With the
help of the UAV, soldiers become more aware of battlefields
situation, and make correct decisions to reduce casualties.

(a) UAV concept. (b) UAV landing on UGV.

Fig. 3. Portable UAV.

Fig. 3(a) shows the concept of the portable UAV. It is of
small size, foldable and easily carried. Soldiers carryingthe
UAV can fly it anytime for overlook scout. Thus, the UAV

can start scouting anywhere soldiers can reach, and reach
where soldiers cannot reach. The UAV is equipped with vision
sensors, including cameras and infrared to acquire valuable
battlefields information. To enhance the on ground moving
ability, a UGV is used as a landing station for the UAV as
shown in Fig.3(b). It can move conveniently and hide in
grass. It is also equipped with powerful sensors, including
camera, laser scanner, ultrasonic, etc, and can be assigned
with some scouting tasks. Both the UAV and the UGV can
be special members in soldier formations. In Fig.4, the
formation includes the mixture of the UAV, UGV, and soldiers.
Soldiers can communicate with each other, as well as the
UAV and UGV. The unmanned vehicles and soldiers build up
a powerful vision system to monitor uncertain factors in the
battle field avoiding unnecessary sacrifice. The overall system
is well networked, in which wireless links between them
guarantee real-time data exchange. Soldiers acquire valuable
battlefields information from UAV, while the UAV accomplish
tasks according to both commands and informative data from
soldiers.

Fig. 4. Networked Battlefields system.

In the battlefields, omniview is crucial for soldiers to make
tactic decisions and execute scout and surveillance tasks,
avoiding unnecessary casualties. However, neither soldiers
nor unmanned vehicles can generate omniview of the overall
environment from their own vision sensors. Thus, information
collected from each unit of soldiers and unmanned vehicles
in the networked vision system is fused together. The fused
information can be used to guide tactical movement of both
unmanned vehicles and soldiers. Data is transmitted through
high-speed wireless links between them. To generate a better
and faster omniview, multi UAVs can be used to collect data
simultaneously. Multi UAVs can collaborate to find proper
sensing positions and deploy themselves for valuable infor-
mation acquisition.

In the dynamic networked system formed by unmanned
vehicles and soldiers in battlefields, self-navigation is required
for UAVs, especially when they fly temporarily out of the
communication range of soldiers or it is unclear from soldiers’
views. It can adaptively collect the most important measure-



ments to increase battlefields fidelity and execute surveillance
or scout tasks autonomously. There are two ways for self-
navigation. The first is to recognize target by equipped sensors,
including cameras, lasers, etc. Sensors can acquire and filter
target information in battlefields, which should be paid more
attention. Once targets are located, UAVs can collect more
information regarding the target. The other way occurs, when
no obvious targets can be found, which is also the main
focus of this paper. In this case, a Bayesian analysis process
is executed as addressed in Section III to determine new
measurements. Existing data will be analyzed and posterior
distributions of battlefields signals will be inferred. Soldiers
can send commands to interrupt any ongoing tasks based on
self-navigation via real-time communication, since soldiers’
commands have the highest priority. Feedback can also be
read from unmanned vehicles for soldiers to change tactic
deployment accordingly.

B. Simulation Results

Due to the experimental conditions, only simulations are
performed to justify the efficiency of the adaptive sampling
method presented in this paper. In the following simulations,
mobile sensors are used to adaptively collect informative data.
A small portion of initial random measurements are used
to simulate soldiers’ observations in real battlefields. Inthis
section, two simulations are done. In the first simulation,
average reconstruction performance is evaluated by comparing
reconstructed signals with original signals. The errors between
them indicate the reconstruction performance. In the second
one, a particular simulation is given, Great Lakes ice cover
reconstruction. In the latter one, the experiment is compared
with another adaptive sampling method. All the computations
in this section were performed using Matlab run on a server
with two Intel Xeon 5130 CPUs working at 2G and 8G DDR2
memory.

1) Average Performance:To evaluate the average perfor-
mance, we reconstruct an image in Fig. 5(b). Measurements
are collected in both adaptive way and random way. The exper-
iments are repeated many times for the average performance.
All measurements are collected in the spatial domain and
assumed0 measurement noise. Suppose the original image
in Fig. 5(b) is x, each measurement can be represented as
yi = φix = φiΨ

T s, where s should be the 2-D wavelet
transform of the original image. We assume a mobile sensor
can only cover a small area in the image,Asmall which is
supposed to bem by m. Thus, each measurementyi is a
linear combination of all elements in the corresponding small
area defined, and in each row of the measurement matrixφi,
there exists onlym by m non-zero entries. The coefficients
of the combination are drawn from a standard Gaussian
distribution with 0 mean and 1 variance. To evaluate the
reconstruction performance, reconstruction error is introduced
as||xrec−x||2/||x||2, wherex andxrec represent original and
reconstructed signals separately.

We consider the reconstruction of a32 by 32 image.
The original image and reconstructions of different ratiosof
adaptive measurements are shown in Fig. 5. To reconstruct

the image, each measurement collected is restricted withina
5× 5 area with weighted factors drawn fromN(0, 1). 15 best
candidate measurements are determined each time, and the
closest one is chosen as the position where mobile sensor has
to visit to collect measurements. Original image we used to
reconstruct is shown in Fig. 5(b). Supposing to reconstruct
Fig. 5(b) we have a set of random measurements in advance.
A mobile sensor would collect some optimal measurements.
The red line indicates the reconstruction error of the random
measurements, where the total percentage is shown in the
figure. The blue line in Fig. 5(a) is generated by choosing250
(about 25%) random measurements at the very beginning, and
adaptive measurements as the rest. Each point on the curves
is generated by averaging50 reconstructions.

Fig. 5(c) shows the reconstruction result of 200 adaptive
measurements collected one by one and 250 random measure-
ments as a basic portion. Fig. 5(d) shows the reconstruction
result of 450 random measurements. The reconstruction errors
are 0.104 and 0.127 separately. As discussed in III, recon-
structions with adaptive measurements outperform, and the
reconstruction can be obviously improved when measurement
percentage is relatively small. As measurement percentage
increases, the error becomes very tiny, and the impact of
adaptive measurements is not that significant.
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(a) Reconstruction error.

(b) Original image. (c) Reconstruction with
error 0.104.

(d) Reconstruction with
error 0.127.

Fig. 5. Reconstruction error comparison.

2) Sampling & Reconstruction of Great Lakes Ice Cover:
In the second experiment, a potential application is discussed,
that is, to sample and reconstruct the ice cover of Great
Lakes. The ice cover of Great Lakes has great impacts on
many aspects of life, including fishing industry, commercial
shipping, potential flooding, etc. As an important indicator of
regional climatic conditions, research work on ice cover of
the world’s largest freshwater surface has been paid a huge



(a) Ice cover RGB image. (b) Reconstruction gray scale image.

(c) Lake Superior ice cover.

Fig. 6. Great Lakes ice cover reconstruction.

amount of effort.
In this part of simulation, we fairly assume to monitor

the Great Lakes ice cover using a mobile robotic sensor
(UAV). Restricted by our experimental equipments, we only
did simulations based an NOAA image. Fig. 6(a) shows the
ice cover scenario of Great Lakes from NOAA web site
1. In this simulation, it is supposed that a UAV can fly
over the Great Lakes area and reconstruct the ice cover. To
simplify the situation, the ice cover image in gray scale is
used. The overall image is in the size of 576 by 448. 20%
random measurements are initially generated, and 20% more
adaptive measurements sequentially determined and collected
given existing measurements. Once enough measurements are
collected, a reconstruction algorithm is run to recover the
ice cover image. Fig. 6(b) shows the reconstructed ice cover
based on the algorithm addressed in this paper. In this gray
scale figure, the pixel value ranges from0 to 255. The
reconstruction error is 0.2204 under the assumption that there
is no measurement noise, which is computed as addressed in
IV-B1.

At last of this simulation, our adaptive sampling method
is compared with the two step adaptive sampling method
addressed in [3]. In this part, we suppose to reconstruct the
ice cover of Lake Superior as shown in Fig. 6(c). In this
scenario, gray scale image with the size of128 by 256 is
generated, whose pixel value ranges from0 to 255. Gaussian
noise is added into the measuring process to approximate real
measuring situations. Each measurement is added5×N(0, 1)
noise for both methods. To implement adaptive sampling
method in [3], 50% measurements are collected in total,
with 25% for the coarse survey and25% for the refinement.
For the adaptive sampling method in this paper, the same
amount of total measurements are collected, that is,25%
random measurements and25% adaptive measurements. After
reconstruction, the method addressed in this paper performs
a little better with the reconstruction error0.2758, while the
other one has error of0.3541. In the experiment, the trajectory

1http://coastwatch.glerl.noaa.gov/overview/cw-overview.html#FIG1.5

of mobile sensor is also generated. Since the adaptive sampling
method is considered in the Wavelet domain, the trajectory of
mobile sensor is not that related with the actual image shape
in Fig. 6(a). Thus, it is not shown in this paper.

V. RELATED WORK

The focus of this paper is to exploit a powerful data-
adaptive sensing platform based on mobile robotic sensors.
Adaptive sampling provides the opportunity to effectivelyallo-
cate sensing resources. Adaptive sampling has been appliedin
many fields. Nowaket. al. [13], propose a multi-step adaptive
sampling, also named distilled sensing, which is shown to be
an effective approach when detecting and recovering high-
dimensional sparse signals with noise. Data-adaptive path
planning schemes are investigated for both single mobile
sensor and wireless networks of mobile sensor platforms [1],
[3], resulting in reducing an impractically large number ofpre-
computed sensing elements to an affordable quantity. More-
over, the rich literature in adaptive sampling based on multi-
robot platforms provides a large class of methods for wide-area
exploration, mapping, and environmental monitoring. Zhang
and Sukhatme [4] proposed an adaptive sampling algorithm
for a mobile sensing network to estimate a scalar field subject
to the constraint that mobile robots have limited energy.

Compressive sensing is an effective way to significantly re-
duce samples required to reconstruct sensing fields of interest.
It is an emerging research field based on that a small number
of linear measurements can recover a sparse or compressible
signal without loss of any useful information [6], [14]–[16].
An orthogonal basis is always chosen to sparsely represent
the original signals. By applying compressive sensing, the
signal can be recovered from incomplete measurements gen-
erated by a sampling rate much lower than the requirements
in Shannon sampling theory. Thus, it reduces the load at
sampling stage. Random chosen linear measurements have
been proven good reconstruction [16], [17]. The random
linear measurements can be applied to many transform-based
orthogonal bases, such as Fourier, wavelet, discrete cosinusoid
[18]. Compressive sensing can be applied to many practical
applications. Candeset. al. [19] shows that image can be
perfectly reconstructed by samples along radial lines rather
than random projections. A promising new paradigm for
networked data analysis is described in [20] to reconstruct
sparse or compressible networked data in multi-hop networks
and wireless sensor networks. Compressive sensing is also
used in a mobile cooperative network [21] that is tasked with
building a map of the spatial variations of interest with a
small number of measurements. Baraniuk et al. develops a
new camera architecture with only a single detection element
[22].

Recent research on compressive sensing explores sparsity
structure of target signals from the Bayesian perspective.With
Bayesian approaches applied into the measuring phase of
compressive sensing, a so-called adaptive compressive sensing
is developed, where the measurement matrix is generated
gradually, so that each measurement is particularly designed to
maximize the information content to achieve local optimum.



The desired signal has statistical characteristics which can
be used to significantly reduce the number of compressive
sensing measurements by the Bayesian inference [7], [8].
With compressive sensing signals modeled as Gaussian ran-
dom variables, Tipping [10] gives the solution optimizing
the variable parameters. Posterior mean and covariance are
estimated through expectation-maximization algorithm. Based
on posterior mean and covariance, Jiet. al. [23] propose a
Bayesian compressive sensing framework which optimizes the
measurement matrix by providing posterior belief of the sparse
representation from the Bayesian perspective. Menget. al.
[24] applies Bayesian compressive sensing into wireless sensor
networks for sparse event detection to reduce the number of
wake-up sensors.

By applying Bayesian approaches into the decoding phase,
recovery algorithms are enhanced. Signal models and measure-
ment models are considered during recovery, resulting in less
reconstruction noise, and faster computation. MCMC methods
are used to infer new projections by drawing samples. He
and Carin [12] demonstrate that substantially fewer projection
measurements are sufficient to achieve accurate compressive
sensing reconstruction via MCMC methods by analyzing the
Wavelet tree structure of a signal. Similarly, Tan and Li
[25] show that a sparse Bayesian learning algorithm and a
block Gibbs sampling algorithm can be used to estimate the
transform coefficient vector (sparse representation). Baron et
al. [26] performs approximate Bayesian inference using belief
propagation decoding to represent the measurement matrix as a
graphical model based on available statistical characterization
of the signal. Babacanet. al. [27] develop a greedy algorithm
for fast reconstruction using Laplace priors to model the
sparsity of the unknown signal.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, an adaptive approach is proposed to sample
and reconstruct a given sensing field. This research work
is based on the statistical model for Bayesian compressive
sensing. The structure in wavelet coefficients of signals is
exploited in the sampling process. It has been justified better
performance in the simulation. Compared with compressive
sensing involved random measurements and other adaptive
method, smaller reconstruction error can be achieved by
adaptively collecting measurements under the situation that the
same amount of measurements and the same reconstruction
methods are used. The proposed method has demonstrated
modest motion cost when collecting adaptive measurements
by mobile robotic sensors.

Real experiments will be carried out in the future. Experi-
mental environment using multiple P3-AT robots and the UAV
shown in Fig. 3(a) is to set up. Additionally, multi unmanned
vehicle collaboration will be researched. Reconstructionper-
formance will be compared with other reconstruction methods.
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