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Abstract

This paper presents a novel adaptive sampling method using intelligent UAVs in battlefields to help soldiers with awareness of
environments. A UAV can perform as a robotic wingman in soldier formations, compensating for that cannot be scouted by soldiers
even being exposed to enemy fire. With portable size, the UAV is easily carried and flown for scouting tasks anytime. The flexibility
of UAVs makes it possible to collect measurements sequentially. Each measurement is adaptively designed and determined from the
Bayesian perspective to increase the fidelity of battlefields. Wavelet structure is considered to optimize measurement projections to
substantially reduce the number of measurements based on compressive sensing framework. More specifically, each measurement
is optimized by maximizing the posterior variance inferred from existing informative data. A motion planning algorithm for UAVs is
designed based on the distribution of optimal measurements, striking a balance between moving cost and measurement value.
Simulation results and future experimental environments are presented at last.

I. INTRODUCTION

This paper is focusing on adaptive sampling based on UAVS in
battlefields, which is established on the emerging research
work of mobile adaptive sensing and down-sampling methods.
To collect measurements from dynamic battlefields, both
soldiers and unmanned vehicles can be involved. Soldiers can
collect battlefield information in their surrounding areas.
However, it is usually impossible and very dangerous to collect
information from where enemy firepower can cover. By
adopting UAVs, measurements can be collected in a more
flexible way. UAVs are equipped with more advanced sensors
and computational devices. As mobile robotic sensors, the
mobility allows them to reconfigure themselves according to
sensing requirements. With increasing research interest in
mobile robotic sensors due to their wide applications [1]- [5],
researchers are becoming more aware of the advantages of
using mobile sensors to monitor and recover dynamic
environments.

In practical applications, mobile sensors always collect
measurements excessively, causing a waste of sensing re-
sources. Typically, Singh et. al. [3] have proposed an adaptive
sampling algorithm to sample and reconstruct a spatial map
using mobile sensors, however, with a coarse survey before
adaptive refinement, a portion of which may be regarded as
excessive measurements containing less useful information.
Furthermore, mobile robotic sensors are always constrained by
limited energy, sensor capability, and other environmental fac-
tors, influencing their sensing capabilities. These suggest that
only the most informative data should be collected to avoid
wasting sensing resources especially in battlefields, where
more casualty can be caused due to additional scout. Compared
with sampling schemes that use invariant strategies involving a

uniform sampling scheme, it leaves open problems on how to
evaluate, determine, and collect the most informative
measurements.

In the real world, the most informative data always con-
centrates at some particular locations that can be inferred or
predicted. Most natural signals are sparse or compressible
under certain domains, which means some or even many
components of signals can be discarded. Therefore, it will be a
waste of time and sensing resources to collect measurements of
these components. Partial measurements containing most
informative data are enough to represent target sensing fields
with acceptable errors. Compressive sensing [6] guarantees
signals can be recovered from incomplete measurements with
little information loss. Motivated by compressive sensing, the
number of measurements can be substantially reduced with
acceptable reconstruction errors. Traditional compressive
sensing methods collect random measurements, which have
been proved to be of efficiency and high-performance in the
field of digital signal and image processing. However, the
number of measurements can be further reduced to improve
sampling efficiency, if the latent features of signal itself can be
explored to locate the most informative data.

Researchers working on Bayesian compressive sensing have
made efforts to further reduce the number of measurements.
Duarte et. al. [7] have proved the number of compressive
sensing measurements can be substantially reduced, consid-
ering target signal features from the Bayesian perspective.
Based on the signal dependency under a sparse domain, each
measurement can be individually designed and optimized.
Given a set of incomplete measurements, the original signal
distribution can be inferred. Thus, it is possible to determine
new measurements that can maximize the posterior variance to



decrease the sensing field uncertainty. This suggestslawfolto y = ®x. Obviously, it cannot be solved directly, since
up a loop to determine adaptive measurements sequentigiigre are more unknown variables than equations. Thus, in
that each measurement is the most informative given atbmpressive sensing it requires the target signas either
existing ones. sparse or compressible (sparse under another domain) to
This paper develops an adaptive approach to sample arduce the number of unknown entries. A sparse signal of
recover battlefields by collecting a small number of meaimensionN x 1 with the sparsityK indicates that there are
surements using UAVs. This approach features flexibilitgnly K significant entries, andv — K zero or very small
and adaptability. To monitor and recover dynamic envirorentries. Usually, the( is far smaller than theV. To sparsely
ments, this method involves fast sampling, processing, arepresent the target signa| it is supposed that is the sparse
re-sampling scheme. The way to increase sampling efficiengpresentation with: = ¥”'s, where ¥ is a particular sparse
is to collect a small number of measurements, but the mdetsis.¥ could be thel matrix if x is sparse already. Therefore,
informative ones. It is also critical to efficiently alloeasens- the basic compressive sensing equation is given
ing resources between sampling and mobile sensor moving. T
Since mobile sensors are restricted by multiple factodua y=r=20U"s @
ing energy constraints, sensor capabilities, etc, meagire \With a sparses that has onlyK significant values K < M),
collection is also subject to UAVS moving cost. the system can be solved. Only unknown variables have to
The sampling algorithm in this paper is built based obe dealt with rathetV (K < N), thus reducing the signal
compressive sensing, collecting only the most informativ&mplexity.
data. Compressive sensing is considered in the Bayesiarhe compressive sensing model in Edqu) is popularly
perspective. Wavelet structure and statistical properoé used in many applications. Based on this basic compressive
given signals will be observed from existing incomplete megensing model, statistical compressive sensing modelées b
surements. New measurements are determined by exploitsigdied. Signals in the CS system as shown in EQU.
these latent features, and collected by mobile robotica®ensare modeled under Gaussian distributions, so that statisti
sequentially. Mobile sensors (UAVs) provide the flexilyilib  features can be used. In statistical models, the sparsesepr
sequentially sample a target sensing field. Motion planningtions is decomposed as the sum of two items with significant
is proposed to strike the balance between the informatigalues and small values separatelys= s,, + s., wheres,,
amount of each measurement and moving cost from currégestablished by replacing small entries with zeros, anis
sensing position to the next candidate one. The algoritheBtablished by setting significant entries zero. Both thifi
alternates between determining measurements and coflecéant and the small values can be modeled as Gaussian random
measurements. Since each measurement is carefully desigagiables with significant and small variances. Howeveg, th
and locally optimized to contain more information, the n&mb second item is always regarded as Gaussian noises. Thensyste
of measurements is smaller than that of compressive sensggiation is given
methods involving random measurements. In this paper, the T T T
statistical model of compressive sensing under wavelet tre y =W sy + QU se = QU 5 + e (@)

structure is introduced as preliminary knowledge. Itenaito \here n,, the insignificant item, is regarded as a sort of
determine and collect the most informative measuremests fpjse. In Equ.(2), the measurement noise is ignored. With

elaborated. Existing research work is reviewed, and expefie consideration of measurement noise, the system equatio
mental results are shown at last. can be expressed as

_ T _ T
[l. PRELIMINARY KNOWLEDGE y =W sm +ne +nyw = W s + 10 ®3)

This paper is based on compressive sensing. The basheren,, is the measurement noise, angis the total noise
compressive sensing idea involves dowm-sampling phase amdhe system. The total noise is modeled within Gaussian
signal reconstruction phase. This paper develops adaptiistributions,ng ~ N(0,a5") with ag' = o2. Thus, the
sampling scheme based on mobile platforms for the formeempressive sensing measuremeptsan be regarded as a
one. This section briefly summarizes the preliminary regearmultivariate Gaussian distribution
work about statistical compressive sensing and wavelet tre

T -1
structure that will be used in presenting the proposed adgapt Y~ N(@U sm, a0 1) )
sampling approach. The Gaussian distributions illustrate statistical feasuiof
target signals. In this paper, a particular sparse domadar H
A. Compressive Sensing Model wavelet is used, and the statistical features are used toiexp

. . . the hidden signal structure under Haar wavelet domain.
Compressive sensing reconstructs a target signal by using

incomplete measurements. Given an unknown signalith

the dimension ofN x 1, it is required at leastV mea- B. Wavelet Tree Structure

surements in traditional sampling methods. In compressiveCompressive sensing considers signal reconstructionrunde
sensing, a measurement matdx projects the signal from sparse domains. Haar wavelet domain is a popular used
higher dimension k) to lower dimensior(M) with M < N, sparse domain, under which signals appear different scales
generating the measurement gewith M elements, subject of repeated patterns besides the sparseness. Signalsitre qu



=0 =1 .- I=L the “likely to be significant or small” relationship, the var
ance is considered in two aspects, zero(or nearly zero) and
non-zero(or significant), corresponding to “low” and “high
The transition-probability matrixP? at scalel is defined as
P(1,1) = 1 —aP, P(1,2) = «, P(2,1) = 1 — 7},
P(2,2) = 7. The P(i, j) indicates the probability of a child

in statej given its parent in staté Thus, the variance of each
wavelet coefficient locates in a mixture distribution

o2 = (1-— 71'1-)67'1-2 + T (6)

K2

The small valuee could be zero, but does not has to be,
since the precision is used = O_i—z_ Each wavelet coefficient
maintains two mixture parameters except that in the root
scale { = 0), which indicates two possible different states of
the corresponding parent.

7,/,\(
j wheree is a very small value, and is the original variance.

0 .
T Zf Spa(i) = 0
1 .
T =1 T tf Spa(i 0 7
Fig. 1. Wavelet structure. v i f pa(i) 7 (@)
m, if root scale

Ppa(i) IS defined as the parent coefficient of coefficient
related between adjacent scales, forming the wavelet tfegy Spa(iy = 0, it meanso; = er;, corresponding to the first
structure. Recent research has proved that the number of ié in Equ.(6). For the coefficients at root scale, there is no
measurements can be further reduced by exploiting the avearents existing, and they are considered as significanesal
tree structure. This structure can be observed under the Hai the time.
wavelet domain. In this paper, wavelet tree structure idistl
to optimize adaptive measurements. l1l. ADAPTIVE SAMPLING USING MOBILE SENSORS

In traditional compressive sensing, random samples ar

eAda tive sampling is presented in details in this section
always collected [6], and the signal is directly reconstdc P ping Is p )

. T : ; This adaptive sampling is based on compressive sensing.
without considering the dependencies of entries of thesepa& . . .
ompressive sensing collects random measurements without

representations. By exploiting the signal structure, Bada T . .
et al. [8] prove that CS performance can be improved. T[}%on&dermg impact of each measurement. Adaptive sampling

) Ollows up an iterative procedure to generate measurenbgnts
wavelet-tree structure [9] provides a powerful tool to expl . .
signal structure under Haar Wavelet domain. In this papgrmb"e robotic sensors step by step to make sure each measure
¥ in Equ. (1) represents the Haar Wavelet' domain anm’ent is the most informative one given existing measuresent
. -qu. P - R mobile sensor requires some initial information before@md
Fig. 1 illustrates the structure of the wavelet tree. In Hig. .. ; . C
tively collecting measurements. In battlefields, inforivat

the §|gnal 'S repeated at different scalésr- 0... L. Each data from soldiers are regarded as initial information fé&/&
coefficient in upper scale (smaller scale number) has four

) . . . t0 adopt adaptive measurement collection. New measursment
children coefficients in the adjacent lower scale. Whether t . o . :
T o S are collected to increase the fidelity and resolution given
coefficient in lower scale is significant or insignificant éaegds -
) . S existing measurements.
quite a lot on whether its parent is significant or not. Thus, t

states can be defined to illustrate the significant or inBizanit Fig. 2 shows the adappve samphng_and recopstruqtlon
) X . . framework for a block. This framework includes six major
value. Given a compressive sensing model in Eqy, the

entries of the sparse representatiorare modeled in two parts,initial measurementsnean and variance estimat@ea-
states, “high” and “low”, corresponding to the significantia surement determinatiommotion planning parameter update

: . . . and signal reconstructionIn initial measurementsa small
small values separately. It is believed that one coefficient ortion of battlefields information is qiven at the very be-
likely to be significant, if it has a parent of significancedanp 9 y

vice verse Therefore, in the sparse representation, no entryqlsnmng' Then, compressive sensing model in EqL) is

independent. The dependency between entries is exactly Stablished withP as the initial random measurement matrix.

€. . . .
. : v iterative process is used to determine and collect mea-

latent feature to be explored that will benefit measuremen : . i
selection surements. New measurements will be inferred from posterio

- . .__information of the current block given existing measuretaen
Each of the wavelet coefficientsis modeled as a Gau55|ar1f . . ; .
. rom the Bayesian perspectivemean and variance estimate
random variable . ) .
approximates the posterior mean and variance of the wavelet
si~N(0,02),i=1...N (5) coefficients under Haar Wavelet domain. Theparameter
introduced in 1l is used to estimate posterior mean and
where the variance? is written asc; ' in most literatures, variance, and will be updated in the following process. Once
indicating the precision of Gaussian distributions. Tasttate the posterior mean and variance are obtaifddasurement

1



Signal
reconstruction
.. Estimate Determine
Initial random . N . . . . . Update
posterior mean optimal Motion planning
measurements R parameters
and covariance measurements

Fig. 2. Framework of adaptive sampling & reconstruction.

determinatiorchooses optimal measurements to maximize theSince the three distributions in Eq@8) are known, the
posterior variance. The measurement of the maximal postemposterior distribution ofs can be calculated. Given a set
variance indicates to diminish the sensing field unceaimt of measurementg, it can be calculated that|y, o, a0 ~
the most extent. However, for a mobile sensor the moving(u, ) with posterior mean and variance, yielding

cost has to be considereMotion planningmakes a trade- e (10)
off between measurement importance and sensor motion, and p=ao Y
confirm the position of the next measurement from a few = (ao(q)q;T)Tq)\I; + A)_l (11)
candidate positions. The new measurement is collected afte .

the motion is confirmed and accomplish@rameter update WhereA = diag(ay, az...an). _ o
generates more accurate parameters given all the existin(_\,{_\/'th the posterior mean and variance calculated, it is worth
measurements. Accuratewould result accurate measuremerffoting that the parameters in Eq(@), which is a likelihood
inference. Each of the four-step iterations ends up withva ndunction, can be optimized in order to infer new precisions
FOW ¢ner added into the measurement matdixand a new 9iVen the posterior mean and variance. To optimize parasiete
measurement sej,.., generated. In the next iteration, allin EQU. (9) is to maximizeL(a, ag), so that the best and
the computation is based on the newly generabednd y. @0 €an be found for the distribution. This is known as the
The sampling iteration terminates, once enough measutsmdjpPe-1l maximum likelihood, and can be implemented through
are collected. Signal is then reconstructed for currentkplo differentiation, being given in [10]. The new parametersli

and mobile sensor will move to an adjacent block for more grew — i (12)
exploration. ¢ w2

. i i 1/anew _ ||1/_(I)M||% _ ||y—(I)‘LL||§ (13)
A. Estimate Posterior Mean and Variance © T N-vw @ Ym

For each block, a set of initial random measurements hasjfiere;, = 1 — o; ;.
be collected as the basic information. Then new measurementan iterative algorithm can be executed by alternating be-

are generated step by step. Each measurement is determiie@n Equ.(10) (11) and Equ.(12) (13). The convergence

from existing information, more specifically the posteriofs very fast, andv; becomes large for zero or small wavelet

variance of the target signal. In this part, posterior meagh acoefficients.

variance estimation is shown. In Haar Wavelet domain, signals have special associations
In this paper, bothy and s are regarded as Gaussiarhetween adjacent scales, suggesting that the parametan

variables, which are determined by mean and variance. @@ further optimized. From Equ6), it can be seen that the

approximate the signal, it is important to infer the meawavelet structure can be imposed to the variance. Thus, the

and variance. In the compressive sensing system, the spaig®e structure can be imposed to E6i2), resulting
representations (wavelet coefficients) is subject to multivari-

ate Gaussian distributions. Given a measurementy sehe 1/aev = (1 — m)eﬂ_? + m/‘_zz (14)
posterior distribution of is given in [10] Vi Vi
p(yls, ao)p(s|a) The iterative algorithm has been changed to alternating be-
p(sly, o, ap) = =——————— (8) tween Equ(10) (11) and Equ.(14) (13). The posterior mean

p(yla, ao)

wherea = {a1,as...an}, anda; corresponds to the Gaus-
sian precision of each Wavelet coefficienty|s,a0) and g neasurement Determination

are Gaussian distributions from Eq4.) and Equ.(5). . L . .
p(sla) du) qu (5) With the estimation of posterior mean and covariance, new

o, ) is a likelihood function forae and g, being given . ) .
P(yle, ao) 0 99 measurements are to be determined to achieve local optimum.
The basic idea to determine a new measurement is to add a
Lo, ag) = a, o :/ s, « s|la)ds 9 )
(o, a0) = plyla, ao) plyls, ao)p(sfa) © new row to the measurement matfx such that the resulting
measurement would have the maximal posterior variance. The
maximal posterior variance indicates the most uncertaartg

and variance can be approximated with a few iterations.

- (2@-%

I
— +dA T
Qo

I
exp{oé—0 + oA 10T}



a measurement with maximal posterior variance is to dirhinigactors have to be considered, including mobile sensoirtgrn

the uncertainty to the most. Suppose as a time instant,obstacles, collisions, etc. In this paper, we fairly assuhee

measurements have be collected with the given measurenmaoving cost is proportional to the moving distance.

matrix ® = [¢7,¢3 ---¢L]7. The aim in this step is to The situation in Equ.(18) can be further simplified. A

determine a new row; and add it into the measuremenfew candidate measurements can be generated using Equ.

matrix ®. (17), which should the most informative ones. It is supposed
After a few iterations addressed in Section llI-A, the lateshat n candidate measurements are generated, denoting as

covariance is computed given newand ag Pr+1,1 - Pr+1,n- The New measurement is chosen simply by

ynew _ (agew(q)\l}T)Tq)\Ij_i_Anew)(*l)

where A" = diag(afe®, a5™...ake"). . . .
In [11], new measurements are determined by maximiziﬁﬁ |d(_aal snua_qons, it is exactly the .closest one to the entrr

the posterior covariance under sparse domain. In thisosectiS€"SINY position. From the experimental results, these two

new measurement will be determined in the spatial domain Bijategies do not differ much. Thus, the latter one is chosen
maximizing the posterior variance of new measurement since the calculation can be simplified, and precessing time
can be saved.

Var(yes1) = ore1 S (g ¥T)T (16)  The paragraphs above have addressed how to determine one

The larger the variance is, the more uncertain the measu'?%’\c’: ergse(;fulrj?rrirr]]enéslbrczvzz\:ﬁr,ulgtifr?lT%ere?jrlljrg:rc]:tg;nthlsalis a
ment is, indicating this particular measurement containsem P q 9 P : pat

valuable information. The parameter is found by maximizin?ad as well as save t|me,_the strategy goes in two steps
this quantity lternating between generating a few new measurements as

addressed above and collecting all of them. Wherandidate

bry1 = argmax Var(yps1) (17) measurements are generated, the problem is converted to a
Prt1 travelling salesman problem (TSP). It is to collect all thes

which is the locally optimized measurement. There might baeasurements with the minimal moving cost. Before all the
millions of new row forms. It is impossible to go through all, measurements are collected, no new candidate measure-
of them and determine an optimal one. The candidate nements will be generated. Once finished, anotherandidate
measurements are chosen from a pre-designed library ofngasurement are generated. TSP belongs to the class of NP-
small number of elements, subject to the particular sensiogmplete problems. In this part, we just choose the canglidat

(15) Gry1 = arg ¢min Clor, Pry14) i=1---n (19)

k41,4

pattern of mobile robotic sensors used. measurement with minimal moving cost as the next one.
As measurements are collected, the numbevould finally
C. Motion Planning reduce tol. Then, a new round can be performed generating a

The optimal measurement determined above is the most fﬁ\-’v more candidate measurements, and collecting one by one.

formative one without considering any motion planning. Wit
mobile sensor involved, motion planning is also an impdrtap, Parameter Update
part. Measurements have to be determined not only subjec
to the maximal posterior variance but also the moving cost

from_current position to the newly determined measureme_sﬁt:z concept of conjugate prior is used, which can estimate
position. '

Based on the description in Section IlI-B, one measurem \mr!ablt_as more a_ccurately_ with knqwn s_ampl&:ja _dIStI’I?
is determined as the local optimum. However, it would b ution is the conjugate prior of a binomial distribution giv

wasteful if the mobile sensor go back and forth to collec®™Me existing samples.

measurements. To plan the motion of mobile sensors, theThe paradigm shown in Fig: contains for major parts for

moving cost should be considered. Not the most informati\?@Ch. I_oop._Thg p_a}rameteri |nd|cat§s whether the wavelet
measurement is collected, but the one which strikes thembellaCoemc'ent is significant or not, while the latestgenerated

between information content and moving cost. Thus, Etft) in estimate posterior mean and vananc_aeud used in Equ.

should be changed by adding a moving cost item. (15) for each loop has the same meanlng._Thus, the update
R of parameterr; uses all thea; generated in prior loops.
Or+1 = argmax (Var(yg+1) — wC(ok, dkt1)) (18) Supposing at thé, loop, there arek — 1 o, that can be

Prt1 used to to estimation;, denoting as/*“", j =1...k—1.

where the first item remains the same as Edu), and the  Ther parameters are updated by

second item represents the moving c@sf:, -) is a function

indicating the moving cost between the two measurement _ , )

positions, and’(¢y,, éx41.;) represents the moving cost from (7} |—) = B | g’ + > (oY) < Inf, QZZEUZ-)(J =Inf),

current sensing position to the next oneis a weighted factor J

that is used to achieve a proper ratio for these two items. ‘ ‘

In plane area, the moving cost is usually proportional to the 0 4 Z 1(04?61“(]) = Inf, O‘ZSZ)(J) = Inf) (20)

moving distance. However, in the real applications, mahgiot j

Il'he aim to updater is to approximate the distribution of
ore accurately, including; for each wavelet coefficient.



can start scouting anywhere soldiers can reach, and reach
where soldiers cannot reach. The UAV is equipped with vision
p(rl|-) = +Z new(f) Inf, ZSUZ)]) < Inf), Sensors, inqluding cameras and infrared to acquire vaéugbl
battlefields information. To enhance the on ground moving
ability, a UGV is used as a landing station for the UAV as
shown in Fig.3(b). It can move conveniently and hide in
grass. It is also equipped with powerful sensors, including
camera, laser scanner, ultrasonic, etc, and can be assigned
with some scouting tasks. Both the UAV and the UGV can
. i new(s) be special members in soldier formations. In Fig. the
p(ri|=) =B | ey + Z 1oy < Inf), formation includes the mixture of the UAV, UGV, and soldiers
’ Soldiers can communicate with each other, as well as the
UAV and UGV. The unmanned vehicles and soldiers build up
Ty Z new(s) =Inf,) (22) a powerful vision system to monitor uncertain factors in the
battle field avoiding unnecessary sacrifice. The overatesys
is well networked, in which wireless links between them
. guarantee real-time data exchange. Soldiers acquirehlalua
statementz, and0 otherwise.

: o r’;\ttleflelds information from UAV, while the UAV accomplish
Iterations containing the above four steps carry on unjl

asks according to both commands and informative data from
enough measurements are collected. Signals are reccnsu;trusoIdlers
given both initial random measurements and adaptive measur
ments. To reconstruct signal, probabilistic methods asxlus

More details about reconstruction is shown in next section.

+ Z new << I?’Lf, new(j) _ I?’Lf) (21)

Ypa(i)

where1(z) denotes an indicator function(z) = 1 for true

IV. SIMULATIONS AND EXPERIMENTS

In this section, possible experimental environment isointr
duced and two simulations are presented using the samplir
method addressed in this paper. To reconstruct the sidral, t
MCMC method addressed in [12] is applied.

A. Experimental Environments in Battlefields

The awareness of environments is important for any soldie
in battlefields. However, in real situations, soldiers anahle
to observe all the perspectives due to the complex environ
ments and enemy fire power. Scout, battlefields surveillance
target acquisition, etc, are always dangerous tasks thgt me.
cause unexpected casualties. An intelligent portable UAV
equipped with vision sensors can provide extra informatiaiy. 4. Networked Battlefields system.
that cannot be observed from soldiers’ perspectives. Wiith t |, e pattlefields, omniview is crucial for soldiers to make

help of the UAV, soldiers become more aware of battlefieldgetic decisions and execute scout and surveillance tasks,

situation, and make correct decisions to reduce casualties avoiding unnecessary casualties. However, neither seldie
nor unmanned vehicles can generate omniview of the overall
environment from their own vision sensors. Thus, infororati
collected from each unit of soldiers and unmanned vehicles
in the networked vision system is fused together. The fused
information can be used to guide tactical movement of both
unmanned vehicles and soldiers. Data is transmitted tiroug
high-speed wireless links between them. To generate arbette
and faster omniview, multi UAVs can be used to collect data
simultaneously. Multi UAVs can collaborate to find proper
sensing positions and deploy themselves for valuable -infor
mation acquisition.
Fig. 3. Portable UAV. In the dynamic networked system formed by unmanned
vehicles and soldiers in battlefields, self-navigatioreiguired

Fig. 3(a) shows the concept of the portable UAV. It is offor UAVs, especially when they fly temporarily out of the
small size, foldable and easily carried. Soldiers carryimg communication range of soldiers or it is unclear from saklie
UAV can fly it anytime for overlook scout. Thus, the UAVviews. It can adaptively collect the most important measure

(a) UAV concept. (b) VAV landing on UGV.



ments to increase battlefields fidelity and execute suareit the image, each measurement collected is restricted wéthin
or scout tasks autonomously. There are two ways for selfx 5 area with weighted factors drawn fromi(0, 1). 15 best
navigation. The first is to recognize target by equippeda@ans candidate measurements are determined each time, and the
including cameras, lasers, etc. Sensors can acquire aed filosest one is chosen as the position where mobile sensor has
target information in battlefields, which should be paid enorto visit to collect measurements. Original image we used to
attention. Once targets are located, UAVs can collect mateconstruct is shown in Fig. 5(b). Supposing to reconstruct
information regarding the target. The other way occurs,iwhé&ig. 5(b) we have a set of random measurements in advance.
no obvious targets can be found, which is also the ma# mobile sensor would collect some optimal measurements.
focus of this paper. In this case, a Bayesian analysis psoc@$e red line indicates the reconstruction error of the ramdo
is executed as addressed in Section Ill to determine neweasurements, where the total percentage is shown in the
measurements. Existing data will be analyzed and posterfigure. The blue line in Fig. 5(a) is generated by chooSb@
distributions of battlefields signals will be inferred. 8iglrs (about 25%) random measurements at the very beginning, and
can send commands to interrupt any ongoing tasks basedadiaptive measurements as the rest. Each point on the curves
self-navigation via real-time communication, since seidi is generated by averagiri reconstructions.
commands have the highest priority. Feedback can also bé-ig. 5(c) shows the reconstruction result of 200 adaptive
read from unmanned vehicles for soldiers to change tactiteasurements collected one by one and 250 random measure-
deployment accordingly. ments as a basic portion. Fig. 5(d) shows the reconstruction
result of 450 random measurements. The reconstructiorserro
are 0.104 and 0.127 separately. As discussed in lll, recon-
structions with adaptive measurements outperform, and the
Due to the experimental conditions, only simulations am@construction can be obviously improved when measurement
performed to justify the efficiency of the adaptive samplingercentage is relatively small. As measurement percentage
method presented in this paper. In the following simulaijonincreases, the error becomes very tiny, and the impact of
mobile sensors are used to adaptively collect informatata.d adaptive measurements is not that significant.
A small portion of initial random measurements are used
to simulate soldiers’ observations in real battlefieldstHis

section, two simulations are done. In the first simulation, 0-1%~X\1& random L

B. Simulation Results

0.18

average reconstruction performance is evaluated by cangpar 0.14}
reconstructed signals with original signals. The errotsvben
them indicate the reconstruction performance. In the s&con
one, a particular simulation is given, Great Lakes ice cover
reconstruction. In the latter one, the experiment is coexbar
with another adaptive sampling method. All the computation
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in this section were performed using Matlab run on a server w
with two Intel Xeon 5130 CPUs working at 2G and 8G DDR2 | N\
memory. 0.02f

1) Average PerformanceTo evaluate the average perfor- ol o o - - -
mance, we reconstruct an image in Fig. 5(b). Measurements ' ' Measurement Percentage '

are collected in both adaptive way and random way. The exper-
iments are repeated many times for the average performance.
All measurements are collected in the spatial domain and

B
assumed) measurement noise. Suppose the original image
in Fig. 5(b) isz, each measurement can be represented as ]
yi = ¢z = $;UTs, wheres should be the 2-D wavelet
transform of the original image. We assume a mobile sensor

can only cover a small area in the imagé,,,.; which is

supposed to ben by m. Thus, each measurement is a (b) Original image. (c) Reconstruction witfd) Reconstruction with

linear combination of all elements in the correspondinglbma error 0.104. error 0.127.

area defined, and in each row of the measurement Mafrix rig 5 Reconstruction error comparison.

there exists onlyn by m non-zero entries. The coefficients

of the combination are drawn from a standard Gaussian2) Sampling & Reconstruction of Great Lakes Ice Cover:

distribution with 0 mean and 1 variance. To evaluate tHe the second experiment, a potential application is diseds

reconstruction performance, reconstruction error ithiced that is, to sample and reconstruct the ice cover of Great

as||zrec —z||2/]|x||2, Wwherez andz,... represent original and Lakes. The ice cover of Great Lakes has great impacts on

reconstructed signals separately. many aspects of life, including fishing industry, commdrcia
We consider the reconstruction of 32 by 32 image. shipping, potential flooding, etc. As an important indicatb

The original image and reconstructions of different ratdds regional climatic conditions, research work on ice cover of

adaptive measurements are shown in Fig. 5. To reconstrtia@ world’s largest freshwater surface has been paid a huge

(a) Reconstruction error.




of mobile sensor is also generated. Since the adaptive sampl
method is considered in the Wavelet domain, the trajectéry o
mobile sensor is not that related with the actual image shape
in Fig. 6(a). Thus, it is not shown in this paper.

) ) ) V. RELATED WORK
(a) Ice cover RGB image. (b) Reconstruction gray scale image.

The focus of this paper is to exploit a powerful data-
adaptive sensing platform based on mobile robotic sensors.
Adaptive sampling provides the opportunity to effectivallp-
cate sensing resources. Adaptive sampling has been ajplied
many fields. Nowalet. al.[13], propose a multi-step adaptive
sampling, also named distilled sensing, which is shown to be
an effective approach when detecting and recovering high-
dimensional sparse signals with noise. Data-adaptive path
(c) Lake Superior ice cover. planning schemes are investigated for both single mobile
sensor and wireless networks of mobile sensor platforms [1]
[3], resulting in reducing an impractically large numbepoé-
computed sensing elements to an affordable quantity. More-
amount of effort. over, the rich literature in adaptive sampling based on imult

In this part of simulation, we fairly assume to monitof@POt platforms provides a large class of methods for widia
gxploration, mapping, and environmental monitoring. Zhan

the Great Lakes ice cover using a mobile robotic sens ! - c
(UAV). Restricted by our experimental equipments, we on:?/nd Sukhatme [4] proposed an adaptive sampling algorithm

did simulations based an NOAA image. Fig. 6(a) shows tH8r @ mobile sensing network to estimate a scalar field stibjec
ice cover scenario of Great Lakes from NOAA web sitiP the constraint that mobile robots have limited energy.

1 In this simulation, it is supposed that a UAV can fly Compressive sen;ing is an effective way to s_ignificar)tly re-
over the Great Lakes area and reconstruct the ice cover. i€ samples required to reconstruct sensing fields oksstier
simplify the situation, the ice cover image in gray scale i¢ is an emerging research field based on that a small number
used. The overall image is in the size of 576 by 448. 20845 linear measurements can recover a sparse or compressible
random measurements are initially generated, and 20% m8f@nal without loss of any useful information [6], [14]-[16
adaptive measurements sequentially determined and teallec®n Orthogonal basis is always chosen to sparsely represent
given existing measurements. Once enough measurementdfeoriginal signals. By applying compressive sensing, the
collected, a reconstruction algorithm is run to recover tifdgnal can be recovered from incomplete measurements gen-
ice cover image. Fig. 6(b) shows the reconstructed ice cofdfted by a sampling rate much lower than the requirements
based on the algorithm addressed in this paper. In this giByShannon sampling theory. Thus, it reduces the load at
scale figure, the pixel value ranges frofnto 255. The sampling stage. Random chosgn linear measurements have
reconstruction error is 0.2204 under the assumption treaeth P€€n proven good reconstruction [16], [17]. The random

is no measurement noise, which is computed as addressedfgar measurements can be applied to many transform-based
IV-B1. orthogonal bases, such as Fourier, wavelet, discreteusasih

At last of this simulation, our adaptive sampling metholL8]: Compressive sensing can be applied to many practical
is compared with the two step adaptive sampling methd@plications. Candest. al. [19] shows that image can be
addressed in [3]. In this part, we suppose to reconstruct thg'fectly reconstructed by samples along radial lineserath

ice cover of Lake Superior as shown in Fig. 6(c). In thi1an random projections. A promising new paradigm for
scenario, gray scale image with the size 188 by 256 is networked data analysis is described in [20] to reconstruct

generated, whose pixel value ranges froro 255. Gaussian SParse or compressible networked data in multi-hop neMork
noise is added into the measuring process to approximdte @3 Wireless sensor networks. Compressive sensing is also
measuring situations. Each measurement is added/ (0, 1) used in a mobile cooperative network [21] that is tasked with
noise for both methods. To implement adaptive Sampm)%lilding a map of the spatial variations; of interest with a
method in [3], 50% measurements are collected in totaﬁma” number of_measurer_nents. Bargnluk et aI._deveIops a
with 25% for the coarse survey arb% for the refinement. NEW camera architecture with only a single detection elémen

For the adaptive sampling method in this paper, the sarfel ) . )

random measurements a2 adaptive measurements. AfterStructure of target signals from the Bayesian perspedtilith
reconstruction, the method addressed in this paper pesforRfyesian approaches applied into the measuring phase of
a little better with the reconstruction err6r2758, while the Compressive sensing, a so-called adaptive compressisegen

other one has error @3541. In the experiment, the trajectoryiS developed, where the measurement matrix is generated
gradually, so that each measurement is particularly desitm

Lhttp://coastwatch.glerl.noaa.gov/overview/cw-ovewhtml#FIG1.5 maximize the information content to achieve local optimum.

Fig. 6. Great Lakes ice cover reconstruction.



The desired signal has statistical characteristics whigh c [2] J. Leonard and H. Durrant-Whyte, “Mobile robot localipm by tracking
be used to significantly reduce the number of Compressive geometric beaconsJEEE Transactions on Robotics and Automation

. ts by the B . inf 7 vol. 7, no. 3, pp. 376-382, 1991.
Sensing measurements by the bayesian interence [ ]’ ﬁ]%] A. Singh, R. Nowak, and P. Ramanathan, “Active learning ddaptive

With compressive sensing signals modeled as Gaussian ran- mobile sensing networks,” iroceedings of 5th International Confer-

dom variables, Tipping [10] gives the solution optimizing ence on Information Processing in Sensor Netwopfs 60-68, 2006.

. . . 4] B. Zhang and G. S. Sukhatme, “Adaptive sampling for eatiny
the variable parameters. Posterior mean and covariance ér]ea scalar field using a robotic boat and a sensor network,JEBE

estimated through expectation-maximization algorithmsé&l International Conference on Robotics and Automatipp. 3673-3680,

on posterior mean and covariance,edi al. [23] propose a 2007. _
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ayesian compressive sensing framework which optimi S. Chappel, “Adaptive sampling algorithms for multiple eaamous
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recovery algorithms are enhanced. Signal models and n®asur  sensing for signal ensembles,” preceedings of 47th Annual Allerton
ment models are considered during recovery, resultingsa le ~ Conference on Communication, Control, and Compytig 244-250,

i . . 2009.
reconstruction noise, and faster computation. MCMC mesthooigi M. Crouse, R. Nowak, and R. Baraniuk, “Wavelet-basedistteal signal

are used to infer new projections by drawing samples. He processing using hidden markov models,” IBEE Transactions on
and Carin [12] demonstrate that substantially fewer ptaeac Signal Processingvol. 6, pp. 886-902, 1998.

ffici hi [51.9} M. Tipping, “Sparse bayesian learning and the relegamector ma-
measurements are sufficient to achieve accurate compgessi chine,” in Journal of Machine Learning Reseatciol. 1, pp. 211-244,

sensing reconstruction via MCMC methods by analyzing the 2001.

Wavelet tree structure of a signal. Similarly, Tan and L1l S. Ji and L. Carin, “Bayesian compressive sensing angegtion

251 sh h B ; | . | ith d optimization,” in Proceedings of the 24th international conference on
[25] show that a sparse Bayesian learning algorithm and a \achine learning pp. 377-384, 2007.
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on Information Theoryvol. 52, pp. 6-18, 2006.
[16] E. Candes, J. Romberg, and T. Tao, “Robust uncertainiticiples: exact
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In this paper, an adaptive approach is proposed to samglg D. Donoho, “Compressed sensing,"IEEE Transactions on Information

and reconstruct a given sensing field. This research work Theory, vol. 52, pp. 1289-1306, 2006.

: o : R. Baraniuk and P. Steeghs, “Compressive radar imggingRadar
is based on the statistical model for Bayesian Compressﬁlg Conference, IEEFpp. 128-133, 2007.

sensing. The structure in wavelet coefficients of signals (i) E. Candes, J. Romberg, and T. Tao, “Robust uncertairitiples: exact

exploited in the sampling process. It has been justifiecebett  signal reconstruction from highly incomplete frequencipimation,” in

performance in the simulation. Compared with CompreSSii/Z% IEEE Transactions on Information Theomyol. 52, pp. 489-509, 2006.
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